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1 Introduction

Let us consider a compact Riemannian manifold M of dimension d endowed
with its normalized Riemannian measure dz (z € M).

Let us consider m smooth vector fields X; (We will suppose later that they
are withous divergence). We consider the second order differential operator:

L= mi X? (1)
i=1

It generates a Markovian semi-group F; which acts on continuous function f on
M
o
E-Pff =LPf :Rf=Ff (2)
P,f = 0if f > 0. It is represented by a stochastic differential equation in
Stratonovitch sense ([3])

P, f(z) = E[f(z:(z))] (3)
where .
dry(r) = Xyi(zy(z))dw; zo(z) = = (4)

i=1
where t — w§ iz a flat Brownian motion on B™ Classically, the Stratonovitch
diffusion x¢(x) can be approximated by its Wong-Zakai approximation.
Let w;"" be the polygonal approximation of the Brownian path ¢ — w] for
a subdivision of [0,1] of length n.
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We introduce the random ordinary differential equation
dz} (x) = 3 X,(ap (@))du]* ol (z) = 2 (5)
i=1

Wong-Zakai theorem ([3]) states that if f is continuous

E[f(z¢(x))] = E[f(z:(z))] (6)

We are motivated in this paper by an extension of (6) to bigger order generators.
Let us consider the generator L¥ = (—1)¥ 37" X2*. We suppose that the
vector fields X; spann the tangent space of M in all point of M and that they
are divergent free. L¥ is an elliptic postive essentially self-adjoint operator 1]
which generates a contraction semi-group PF on L?(dx)
aﬂk

Let Lf* be the generator on R™ ((w;) € R™) 3 (—1)* 2. By [1], it

generates a semi-group P{f * on C(R™), the space of continuous functions on
the flat space endowed with the uniform topology, which is represented by an
heat-kernel:

PFM[fl(o) = [ f(w+wa)pl*(w) @ du (7)

(w = (w;)) In [7], we noticed that heuristically P/* is represented by a formal
path space measure F* such that

fg Flwk + wo)dQT*(w ) = PRI (f)(wo) (8)

If we were able to construct a differential equation in the Stratonovitch sense

m
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dry(x) = > Xi(zy(z))dwe, ;z5(z) == (9)

Pl (z) = f f(ak (x))dQT* (10)

These are formal considerations because in such a case the path measures are
not defined. We will give an approach to (11) by showing that some conve-
nient Wong-Zakai approximation converge to the semi-group. We introduce,
according to [4] and [5] the Wong-Zakai operator

Qf[f]{.rj = /- f{z,—,{w}{mjjp{‘k{w] @ duy = f f{I[fUka}[.r}jp{’k{wjdw
Bm B™
(11)
where

dry(w)(z) = D Xi(z.(w))wids ;xo(w)(x) = = (12)
i=1
As a first theorem, we state:
Theorem 1 {Wong-Zakai)Let us suppose that the vector fields X; commute.

Then (QF,,)"(f) converge in L*(dx) to PFf if f is in L*(dx)

To give ancther example, we suppose that MW 1= a compact Lie group & endowed
with its normalized Hasar measure dg and that the vector fields X, are elements
af the Lie algebra of & considered as right invarant vector fields. This means
sthat if we consider the right action on L2 (dg) Ha,

F— (g — (Floga)) (13)
we have
Rgo [X. FI(.) = X ([ Rg, FI(-) (14)
We consider the rightinvanant elliptic differential operator

ml
¥ = -1y x* (18]
(TN |
It is an elliptic positive essentially selfadjoint operator. By elliptic theory ([1]).
it has a positive spectrum A associated to eigenvectors fu. A = 01f A belongs
to the spectrum.

Theorem 2 (Wong-Zakai) Let f =% axfa such that 3, |aa|2C* < oo for all
= 0. Then (Qt,n]“{f] converges in L2 (dg) to PEF.

We refer to the reviews [5], [6] [T] for the study of stochastic analysis without
probability. See [8] for an expended version of this work.
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2  Proof of theorem 1

L* iz an elliptic positive operator. By elliptic theory [7], it has a discete spec-
trum A associated to normalized eigenfunctions fi. Since [p. |p{'k {w)]Pdw < oo,
Qi,-n is a bounded operator on L?(dr). Moreover

Dl = aa@ipnfa (16)
if
F=Y asfa (17)

The main remark 15 that we can compute explicitely '-'-?T,mh- We put t = 1/n.
Formally

Azt ™ w))(x) =3 1/ Xaw )™ (£)(z) (18)

Namely, by elipticity and because the vector fields Xy commute with Lk, Wi CAI
conclude that the L¥-norm of XE‘XE:"...XE"_;I’;L has a bound in AZ @/ 2k0E o
in order to deduce that the series in (18) converges. It 13 enough to compute

1/n'l f (Y Xewt"™ )™ fi(z)ps! (w)dw = Br (19)
-
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The maim remark s 1f one of the [ 1= not a multiple of 2k we have
J'IL wlt e g (wrydaw — 0 [ 20

Omn the other hand, by using the semi-group properties of .P;:k"'r, we have

j';_ T L R S iﬂfj‘!l I If‘EI-HT}l (21)

Therefore, B, = 0 1if m' 13 not a multiple of 2k and 1= equal because the vector
field commute, if »' = 2E" to

1 PR G S {2k ) (2L, )0
T S i v e

[

{2&I )

2RI, (2RI — LA™ fa (22)

We deduce that

Qf,.rnf:. = exp[—1/nA] fa (23]
and that
(@Y )™ Fa = exp[—A] fa (24)
=uch that
(2% )™ F = exp[—L]F (25)
if f =7 axfa

3 Proof of Theorem 2

Let FE5 be the space of eigenfunctions associated to the eigemvalue X of L%,
Since L* commute with the right action of &, FEy is a representation for the
right action of 7 ([2]). Therefore rightinvariant vector fields acts on Ea. If
Z is a rightinvariant vector field, we can consider the L? norm of 2, for
belonging to E,. We remark that (LF | C‘ji.'“lk 1= an elliptic pseododifferential
operator of order 1 (& i=s strictly ppositive). By Garding inequality [1],

IZ falle=qay = Cllfalle=¢a + IHL* + CYY2** follp=¢ay (26)

ia 1= an eigenfunction associated to {L* +1"__,-"}1-"'2k and the eigenvalue |:..3'|.+1"__,-"}'-"'2*.
Let us consider a polymomial Xﬁ" ___.3'{':' = . It acts on Ky and is norm is
bounded by ({A 4 )42 4 ()= for the L? norm.
From that we deduce that if fi is an cigenfunction associated to A of L%

that the senes
1720y,

g By, (27)
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converges and is equal to f;\[.r{fl-"z"" w)(x)) By distinguishing if w is big or not
and using (20), we see that if [ # 2kl

/];m (> Xt Zow,)! frpl*(z)dw = 0 (28)
i=1

Moreover, by (20) and (21)

1

—_ { Xitlfﬂcwijzurf,kp{j{ﬂfjdw —
()] fgm ;

t" K okl fk .
me ZXEI:]“XDEHI.}CAW? 1'*tll-"'rzil'l. mP{L{W}dw [EQ]

where Q.I;E_’?- is the number of of a; equal to j. By using (20) and (21), we recognize
in (29)

1" (2KI5) (2KI)! _
(20! D> Xay-Kay T (30)
For I' = 1, we recognize tL.. Let us compute the L? norm of the previous

element. It 1s bounded by

tII 1/2k 1/2k {2
WZ(A P2 O LAY )

o]

) (2KD,)!

AN

(31)
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For I’ = 1, we recognize tL.
We recognize in the previous sum

(2kl)0 (2K (2KI)!

t' ok "
2k 2kl .
(szz(21&1;}!...(2;;1;,3)!} mo Ty A O (32)

t]"cﬂk!’

We deduce a bound of the operation given by (29) in —75—(A+C )

By the same argument, we have a bound of %[ijr on Ey in %Cf[l +C).
In order to conclude, we see that on E,

’
Q¥ = exp[-M|Id + Y QL (33)

I'=1

where Qf,:t has a bound on Ey in Ci'{,}n - C}F. We deduce that QF acts on E)y
by
exp[—At]ld + °Q} = R} (34)

where the norm on E of @)} is smaller that C exp[CAt].

Butif f =Y ayfy
(@1n)"f = aa(Ryn)" f (35)

Universal Journal of Lasers, Optics, Photonics & Sensors
Vol. No. 2 Issue 3— July 2022 01



Moreover
1@ sy = [ 1 [ 1(a (e ) @l (w)dufdg <
C [Ldg [ 11 w)(g) el )P
<c [ i [ |1e )@l (5)

But

[ 16w @k =11l (37)
because the vector fields are without divergence. If A/n < (', the sum
Y (R (38)
A<Cn
converges to
> axexp[-Alf (30)

Moreover 3, . o, ﬂh{Ri‘fﬂ}“ﬁ has a L? norm bounded by (3, . o, | ax|2C*)'/?
which goes to 00 when n — oc.
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